Your Notation Is Telling Reviewers Something
Here's a secret: experienced physics reviewers can often guess whether a paper will be good within the first few equations. Not because of the physics—because of the typesetting.
Improper bra-ket spacing. Inconsistent vector notation. "9.8 m/s^2" instead of properly formatted SI units. These small things signal "this author doesn't know the conventions"—and that bias affects how the rest of the paper is read.
Physics demands precise notation: Dirac bras and kets, proper vector formatting, Feynman diagrams, SI units with correct spacing. This guide covers the packages that make it automatic. (Can't remember the LaTeX command for a specific symbol? Use our symbol finder.)
SI Units with siunitx
The siunitx package is essential for any physics document. It ensures correct spacing, formatting, and consistency.
Basic Usage
\usepackage{siunitx}
% Numbers with units
\SI{9.81}{\meter\per\second\squared} % 9.81 m s⁻²
\SI{6.626e-34}{\joule\second} % 6.626 × 10⁻³⁴ J s
\SI{3e8}{\meter\per\second} % 3 × 10⁸ m s⁻¹
% Just units
The speed of light is \si{\meter\per\second}.
% Just numbers
We observed \num{1.234e6} events.
% Ranges
Temperature varied from \SIrange{20}{25}{\celsius}.Uncertainty
% Plus-minus notation
\SI{1.234(5)}{\meter} % 1.234(5) m
\SI{1.234 \pm 0.005}{\meter} % 1.234 ± 0.005 m
% Separate uncertainty
\SI{1.234(56)}{\kilogram} % 1.234(56) kgUnit Definition
% Custom units
\DeclareSIUnit\parsec{pc}
\DeclareSIUnit\lightyear{ly}
\DeclareSIUnit\solarmass{M_\odot}
The distance is \SI{3.26}{\lightyear}.Configuration
\sisetup{
per-mode = symbol, % Use / instead of negative exponents
separate-uncertainty = true, % Show ± explicitly
range-phrase = { to } % "1 to 5" instead of "1-5"
}Vector and Tensor Notation
The physics Package
\usepackage{physics}
% Vectors
\vb{v} % Bold v
\va{v} % v with arrow
\vu{v} % Unit vector (hat)
% Derivatives
\dv{f}{x} % df/dx
\dv[2]{f}{x} % d²f/dx²
\pdv{f}{x} % ∂f/∂x
\pdv{f}{x}{y} % ∂²f/∂x∂y
% Differentials
\dd{x} % dx (upright d)
\dd[3]{x} % d³x
% Operators
\grad{f} % ∇f
\div{F} % ∇·F
\curl{F} % ∇×F
\laplacian{f} % ∇²fBra-Ket Notation
The physics package provides excellent quantum mechanics support:
\usepackage{physics}
% Basic notation
\ket{\psi} % |ψ⟩
\bra{\phi} % ⟨φ|
\braket{\phi}{\psi} % ⟨φ|ψ⟩
\ketbra{\psi}{\phi} % |ψ⟩⟨φ|
\expval{A} % ⟨A⟩
\expval{A}{\psi} % ⟨ψ|A|ψ⟩
\mel{\phi}{A}{\psi} % ⟨φ|A|ψ⟩
% Example equation
\begin{equation}
\hat{H}\ket{\psi} = E\ket{\psi}
\end{equation}Matrices
% Quick matrices (physics package)
\mqty(a & b \\ c & d) % Regular matrix
\mqty[a & b \\ c & d] % Square brackets
\mqty|a & b \\ c & d| % Determinant
% Pauli matrices
\mqty(\pmat{1}) % σ_x
\mqty(\pmat{2}) % σ_y
\mqty(\pmat{3}) % σ_zMathematical Physics
Common Operators
\usepackage{physics}
% Operators
\comm{A}{B} % [A, B] commutator
\acomm{A}{B} % {A, B} anticommutator
\abs{x} % |x| absolute value
\norm{v} % ||v|| norm
\order{x^2} % O(x²)
% Evaluation
\eval{f(x)}_0^a % f(x)|₀ᵃCalculus
\usepackage{physics}
% Integrals (proper spacing)
\int \dd{x} % ∫ dx
\int_0^\infty \dd{x} % with limits
% Multiple integrals
\iint \dd{x}\dd{y}
\iiint \dd{V}
\oint \dd{l}
% Functional derivative
\fdv{F}{\phi}Tensor Notation
% Einstein notation
The metric tensor $g_{\mu\nu}$ satisfies...
The Christoffel symbols $\Gamma^\alpha_{\mu\nu}$...
The Riemann tensor $R^\rho{}_{\sigma\mu\nu}$...
% Common tensors
\usepackage{tensor}
\tensor{R}{^\rho_\sigma_\mu_\nu}
\tensor{T}{_\mu^\nu}Feynman Diagrams
TikZ-Feynman
The modern approach to Feynman diagrams:
\usepackage{tikz-feynman}
\begin{figure}
\centering
\feynmandiagram [horizontal=a to b] {
i1 [particle=$e^-$] -- [fermion] a -- [fermion] i2 [particle=$e^-$],
a -- [photon, edge label=$\gamma$] b,
f1 [particle=$\mu^-$] -- [fermion] b -- [fermion] f2 [particle=$\mu^-$],
};
\caption{Electron-muon scattering via photon exchange.}
\end{figure}More Complex Diagrams
\feynmandiagram [horizontal=a to b] {
a [particle=$e^-$] -- [fermion] v1 [blob] -- [fermion] b [particle=$e^-$],
v1 -- [photon, momentum=$q$] v2 [blob],
c [particle=$p$] -- [fermion] v2 -- [fermion] d [particle=$p$],
};Loop Diagrams
\begin{tikzpicture}
\begin{feynman}
\vertex (a);
\vertex [right=of a] (b);
\vertex [above right=of b] (c);
\vertex [below right=of b] (d);
\vertex [right=of c] (e);
\vertex [right=of d] (f);
\vertex [right=of e] (g);
\diagram* {
(a) -- [fermion] (b) -- [fermion, half left] (c)
-- [fermion, half left] (b),
(c) -- [photon] (e) -- [fermion] (g),
};
\end{feynman}
\end{tikzpicture}Quantum Circuit Diagrams
For quantum computing physics:
\usepackage{quantikz}
\begin{quantikz}
\lstick{$\ket{0}$} & \gate{H} & \ctrl{1} & \qw \\
\lstick{$\ket{0}$} & \qw & \targ{} & \qw
\end{quantikz}Physics-Specific Symbols
Greek Letters (Common in Physics)
% Lowercase
$\alpha, \beta, \gamma, \delta, \epsilon, \varepsilon$
$\zeta, \eta, \theta, \vartheta, \iota, \kappa$
$\lambda, \mu, \nu, \xi, \pi, \rho$
$\sigma, \tau, \upsilon, \phi, \varphi, \chi, \psi, \omega$
% Uppercase
$\Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi$
$\Sigma, \Upsilon, \Phi, \Psi, \Omega$Common Physics Notation
% Constants
$\hbar$ % Reduced Planck constant
$c$ % Speed of light
$k_B$ % Boltzmann constant
$\epsilon_0$ % Permittivity of free space
$\mu_0$ % Permeability of free space
% Operators
$\hat{H}$ % Hamiltonian
$\hat{p}$ % Momentum operator
$\hat{x}$ % Position operator
$\mathcal{L}$ % Lagrangian density
$\mathcal{H}$ % Hamiltonian density
% Fields
$\Psi$ % Wave function
$\phi$ % Scalar field
$A_\mu$ % Gauge fieldEquations in Physics Papers
The Schrödinger Equation
\begin{equation}
i\hbar\pdv{t}\ket{\Psi(t)} = \hat{H}\ket{\Psi(t)}
\end{equation}Maxwell's Equations
\begin{align}
\div{\vb{E}} &= \frac{\rho}{\epsilon_0} \\
\div{\vb{B}} &= 0 \\
\curl{\vb{E}} &= -\pdv{\vb{B}}{t} \\
\curl{\vb{B}} &= \mu_0\vb{J} + \mu_0\epsilon_0\pdv{\vb{E}}{t}
\end{align}Einstein Field Equations
\begin{equation}
R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}
\end{equation}Standard Model Lagrangian (Partial)
\begin{equation}
\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}
+ i\bar{\psi}\gamma^\mu D_\mu\psi
+ \abs{D_\mu\phi}^2 - V(\phi)
+ y\bar{\psi}\phi\psi
\end{equation}Tables and Data
Experimental Results
\usepackage{booktabs}
\usepackage{siunitx}
\begin{table}
\centering
\caption{Measured decay widths}
\begin{tabular}{lS[table-format=3.2]S[table-format=2.2]}
\toprule
Particle & {$\Gamma$ (MeV)} & {$\tau$ (s)} \\
\midrule
$\pi^0$ & 7.81e-6 & 8.43e-17 \\
$\pi^\pm$ & 2.53e-14 & 2.60e-8 \\
$K^0$ & 7.35e-12 & 8.95e-11 \\
\bottomrule
\end{tabular}
\end{table}Common Physics Journal Styles
Physical Review (APS)
\documentclass[aps,prl,twocolumn,showpacs]{revtex4-2}
\usepackage{graphicx}
\usepackage{amsmath}Journal of Physics (IOP)
\documentclass[12pt]{iopart}
\usepackage{iopams}European Physical Journal
\documentclass[epj]{svjour3}Tips for Physics Papers
Consistent Notation
Define macros for repeated notation:
\newcommand{\hamiltonian}{\hat{H}}
\newcommand{\lagrangian}{\mathcal{L}}
\newcommand{\wavefunction}{\Psi}
\newcommand{\creation}{a^\dagger}
\newcommand{\annihilation}{a}Equation Numbering
% Number only important equations
\begin{equation}
E = mc^2
\end{equation}
% Unnumbered intermediate steps
\begin{equation*}
E = \gamma m c^2 = \frac{mc^2}{\sqrt{1-v^2/c^2}}
\end{equation*}Cross-References
\usepackage{cleveref}
As shown in \cref{eq:schrodinger}, the time evolution...
The Hamiltonian from \cref{eq:hamiltonian} gives...Quick Reference
Essential Packages
| Package | Purpose |
|---------|---------|
| siunitx | SI units |
| physics | Derivatives, bra-kets, vectors |
| tikz-feynman | Feynman diagrams |
| tensor | Tensor indices |
| amsmath | Advanced math |
| braket | Alternative bra-ket (simpler) |
Common Commands
% Units (siunitx)
\SI{3e8}{\meter\per\second}
\si{\joule\per\kelvin}
% Quantum mechanics (physics)
\ket{\psi}, \bra{\phi}, \braket{\phi}{\psi}
\expval{A}{\psi}
% Derivatives (physics)
\dv{f}{x}, \pdv{f}{x}, \dd{x}
% Vectors (physics)
\vb{v}, \va{v}, \vu{v}
\grad, \div, \curl, \laplacianConclusion
Physics papers require precise notation that LaTeX handles beautifully—with the right packages. Master siunitx for units, physics for quantum mechanics and calculus, and tikz-feynman for diagrams, and you'll have the tools to typeset any physics paper professionally.
Remember to always use your target journal's template as a starting point. The notation conventions and style requirements vary between journals, but the underlying LaTeX techniques remain the same.